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The Ornstein-Zernike (OZ) equation is considered for the wall-particle 
distribution function go(x) in the case of a flat, impenetrable wall at x = 0 
and a fluid of hard-core particles whose centers are constrained by the wall 
to occupy the semiinfinite space x > a/2, where a is the particle diameter. 
A solution is given in terms of the wall-particle direct correlation function 
co(x) for x > e/2, the bulk-fluid direct correlation function c~(t), and pB, 
the average bulk density. Explicit formulas for the contact surface density, 
total excess surface density, and the Laplace transform of the fluid density 
near the wall are given. For  mean spherical type approximations, co(x) for 
x > a/2 and eB(t) are both  prescribed functions; for this case, a closed-form 
solution is obtained. An example is discussed and additional equations that  
enable one to go beyond the approximations considered above are 
introduced. 

KEY WORDS: Wall-particle distribution function; Ornstein-Zernike 
equation ; electrode-ion distribution function. 

1. I N T R O D U C T I O N  

Q u i t e  r ecen t ly ,  H e n d e r s o n  et al. ( H A B )  (1~ a n d ,  i n d e p e n d e n t l y ,  P e r c u s  (~ h a v e  

c o n s i d e r e d  t h e  O r n s t e i n - Z e r n i k e  ( O Z )  e q u a t i o n  fo r  a f lu id  in  c o n t a c t  w i t h  a n  

i m p e n e t r a b l e  wall .  4 P e r c u s  h a s  c o n s i d e r e d  t h e  e q u a t i o n  d i rec t ly ,  wh i l e  H A B  
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which came to our at tent ion too late to be compared to, or incorporated into, our own 
results here. 
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have shown how it can be deduced from the limiting case of a mixture in 
which one of the components (which we will label 0) grows in size and 
diminishes in concentration in such a manner that the bulk properties of the 
fluid remain unchanged. If the density of this component is p0 and the 
exclusion diameter is a0, this limit amounts to 

ao-+Oo (1) 

Po~oS--~O (2) 

HAB(l~further showed that the OZequat ion  can be written 

where 

foOO ~x+t ho(x) = Co(X) + 2rrpB dt X--t 

ho(x) = go(x) - 1 

dstcB(t)ho(s) (3) 

and go(x) is the wall-particle distribution function for the solute or bulk 
particles and the wall. In other words, if pB is the bulk numerical density, then 
pBgo(x) gives the probability of finding a center of a bulk molecule at a 
distance x from the surface of the hard wall. 

Similarly, Co(X) is the direct correlation function for the wall-bulk 
molecule system and cB(t) is the direct correlation function for the bulk 
molecules in the absence of the wall. In considering (1) and (2), it is assumed 
that the mixture is already in its thermodynamic limit (i.e., in an infinite 
volume) and is of uniform expected density. That is, each particle--including 
the arbitrarily large particle that becomes a wall--is equally likely to be 
centered at any point in the infinite volume. The system described by cB(t) 
is likewise an infinite and uniform system. 

In their work, HAB ~1~ obtained the solution of (3) for ho(x) in a system of  
a hard-sphere fluid in contact with a hard wall, using the Percus-Yeviek 
approximation for Co(X) as well as %(0.  A solution for the more generally 
relevant case in which the wall and the bulk hard spheres interact attractively, 
with an exponential Co(X) for x > a/2, has been subsequently obtained by 
Waisman et al. (3~ 

It is the purpose of the present work to show that (3) and its extension to 
a multicomponent mixture have a solution for a class of approximate Co(X) 
and cB(t) of physical and physicochemical interest. In order to make this 
statement more precise, let us divide the wall-bulk correlation function Co(X) 
into two parts, 

Co(X) = Co~ - r (4) 
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where Co~ is 0 for x > or/2 and is an unknown function for x ~ a/2. The 
~(x), assumed zero for x <~ a/2, will be called the "wall-particle closure 
function" of the OZ equation. In general, there are two different types of 
closure that one can contemplate on the two-point level, whether one is 
considering the wall-particle direct correlation function Co(X) or the particle- 
particle direct correlation function cB(t): 

(i) An approximate direct correlation function can be explicitly pre- 
scribed in functional form, as in the case of the mean spherical (~) (MS) and 
generalized mean spherical (5~ (GMS) approximations. 

(ii) The direct correlation functions can be given instead as a functiOnal 
of the total correlation function and the interaction potential, as in the case 
of the Percus-Yevick (PY), hypernetted chain (HNC), and related 
approximations.(6~ 

We shall regard the eB(t) that appears in (3) as a known function, 
determined beforehand by means of the MS, PY, HNC, or some other 
approximation. For simplicity we shall further restrict ourselves here to the 
case of a ca(t) that falls off exponentially fast as t --+ 0% as in the MS or PY 
approximation when the interparticle potential itself so falls off. If Co(X) is 
obtained from a wall-particle closure of type (i), 4~(x) is also a prescribed 
function. In this case we can then give a closed-form solution to (3) as long 
as the Fourier transform of 6(x), qg(k), is a meromorphic function with no 
essential singularities in the lower complex k plane. If Co(X) is instead obtained 
from a wall-particle closure of type (ii), we lose the explicit form of the 
solution, but we can still reduce Eq. (3) to a simpler integral equation, the 
degree of simplicity depending upon the closure used. For the wall-particle 
functions, the PY closure is 

- ~ ( x )  = [h(x) + 1][1 - e +~w(x)] for x > ~/2 (5) 

where w(x) is the wall-particle potential, while the HNC closure is 

- ~ ( x )  = h(x) - ln[h(x) + 11 - ~w(x) (6) 

The MS closure is simply 

ok(x) = pw(x) (7) 

while the simplest form of GMS closure is 

r = A(p, ~)w(x) (8) 

with A(p,/3) suitably adjusted (5~ to improve thermodynamic self-consistency 
of the approximation. 
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2. F O R M A L  S O L U T I O N  

We consider a mul t i component  fluid in which all the particles are 
spherical and are labeled 1, 2 ..... n. For  such a system the natural  generaliza- 
t ion of  Eq. (3) is 

fo f ho~(x) = coi(x) + 2~r ~,, pj dt ds tcfj(t)hoj(S) (9) 
Y 

where ho~(X) = go~(X) - 1 is the correlat ion funct ion for  the wa l l - componen t  
i pair, Co~(X) is the direct correlat ion function for  the same pair, Pj is the bulk 
density of  componen t  j ,  and c~j(t) is the direct correlat ion function for  the i, j 
pair. Consider  now the Fourier  t ransform of  Eq. (9). For  this purpose  define 

f ho,(k) = dx  e'k~ho~(X ) (10) 
oo 

Also, we divide eo~ into two parts  [(4)] 

Co~(X) = c~ - dp,(x) (11) 

so that  

and 

c~ = 0 for  x >/r  (12) 

r = 0 for  x < a~/2 (13) 

where a~ is the hard-core  diameter  o f  molecule i. The  Fourier  t ransforms of  
these quantities are then 

~ a i l 2  

?~ = dx  e'kXc~ (14) 

4~(k) = dx e ~x~(x)  (15) 
~/2 

We also define 

and then have 

or in mat r ix  fo rm 

~0 ~176 
(,j(k) = (4rr/k) dr r(sin kr)czj(r) 

h o , ( k ) [ ~ , j  - p , e , , ( k ) ]  = eo~ - C j ( k )  
l= l  

(16) 

(17a) 

r o [ l  - p ~ ( k ) ]  = ~-o~ - ~ j ( k )  ( 1 7 b )  

where rio, go, and d~ are row vectors,  while I - 0~'(k) is an n by n square 
matrix.  
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Now, it can be shown (7) that for fluid systems such that % ( 0  satisfies 
certain conditions, to which we return at the end of this section, we have 

I -  p~(k)= 0 ( k ) & ( - k )  (18) 

where the matrix 0(k)  is bounded and nonsingular in the upper half complex 
k plane, while the matrix Or( - k) is bounded and nonsingular in the lower 
half complex k plane. Furthermore, the matrix I)(k) has to be of the form 

fj Q,(k )  = 3~s - oJ dr e~Q~j(r) (19) 
tt 

where 

;~j, = �89 - ~ )  

From (10) and (11) we get at once 

ho(k)Q(k) = [~o~ - 6(k)I{OT(-- k)}-~ (20) 

Consider now the Fourier inverse of this equation for x > ad2, ~ > 0, 

1 ~=-'~ dk e -~kx E ~oj(k)O,dk) 
2~rj_ | -~6 

1 I ~ --i6 
= - ~ j _ , ~ _ , d k  e - ' ~  ~j. E~ 1 

l ~ - ' 6  dk e-,~x E ~ , ( k ) {Or( -k ) }~  1 
2~r z -  | -i6 j 

(21) 
We seek solutions such that the function Eo~ is bounded and has no 
singularities in the complex half-plane, Im k < 3. Furthermore, Q T ( - k )  is 
nonsingular in that region. More precisely we require for k = - iy, y --~ o% 

Egj ( - i y )  ~ e~~ (22) 

while we know that 

{0r(iy))~ 1 ,-~ eVA,, (23) 

Therefore the integrand of the first term in the right-hand side of (21) is 
bounded by Me~(~d 2-~). For x > ed2 we can close a contour around the 
lower k plane, and this term will have no contribution. This eliminates the 
unknown c~ and is the crux of our solution. The result of (21) is then, for 
x > od2, ~ -+ O, 

f hoj(X) - ~ & dr hoz(X - r)Qlj(r) 
Jt 

1 
- 27r f _ ~  dk ~ ~z(k){OT(--k)}i~le -tkx (24) 

= - dy ~ (y )P t j ( y  - x) (25) 
l/2 
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where the last identity was obtained from Parseval's relation upon introducing 
the function 

f_ 
oo 

P,j(z) = (1/2,0 dk  e*k~(0T(-- k)}~ 1 (26) 
oo 

Equations (24) and (25) are the formal solution of  the stated problem. 
However, to obtain quantities of thermodynamic or structural interest we 
must go further. We can not in general get hoj(x) for arbitrary x in closed 
form, but we can get the contact value h0j(rrd2), the Laplace transform, and 
the total excess surface concentration in a rather simple way. The contact 
value has direct interest since it represents the adsorption probability and 
partial pressure. 

Notice that in the second term of the left-hand side of (24), for x = ad2, 
the argument of ho~(X - r)  is less than ad z  Therefore, since the hard-core 
condition implies 

we have 

hoj(Og/2 ) = 

hot(y) = - 1 ,  y < ad2 (27) 

f, oo 
- ~ Pz dr Ql,(r ) 

l ~.Jl 

I) - (1/2,0 dk e - ' ~ / ~  ~ 6~(k)(~)~(-k)}a ~ 
m l 

o r  

hoj(a;-/2) = - Pl dr Qly(r) 
,Ki t  

+ fo,~ dy4,,(y)p,(y - ~/2)) 
The Laplace transform is also quite straightforward, and is given by 

1 oo dk  e-'~~ 6ot(k)[OT(-k)]~ ~} ~odS) = ~ e-SCd2{-I s (~ty(0) - ~ f _ ~ o  

x (0(is)}~ I 

where 

(28) 

(29) 

(30) 

fo go~ = dx  e-SX[hoi(X) + 1] = dx e-SXgoz(X ) (31) 

The Laplace inversion of (30) will yield a "zone-by-zone" representation 
of the physically interesting quantity go~(x), which will be at its simplest in the 
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first zone ~r/2 < x < 3a/2. [We recall that pigo~(X) is the numerical density of  
component  i at a distance x from the hard surface.] 

Finally, we can calculate the total excess density of  a component  near 
the wall 

fo [ p~ dx ( g o ~ -  1) = lim p~ go~(S) - (32) 
8 ~ 0  

In the simple case of  hard walls in the Percus-Yevick approximation, 
r = 0. 

We return to the conditions under which (18) is valid. Baxter (7)'5 ex- 
plicitly considered (18) only for c~j(t) that vanish identically for large t. 
However, his results generalize to the case of  exponentially decaying c~j(t). 

3. M E A N  S P H E R I C A L  A N D  RELATED C L O S U R E S  

The results of  the preceding section are closed-form equations only for 
closure functions r that are of  prescribed functional form. This is the 
case in the mean spherical and generalized mean spherical approximations. ~'5~ 

The problem is essentially solved if we know the right-hand side of  (24), 
(25), or (30). Because of the analytic properties of  I)T(--k),  which is non- 
singular and bounded in the lower half complex k plane, we can close a 
contour around it. Suppose that the poles of q~(k) in the lower half-plane are 
located at 

k = Zm, m = 1, 2,... (33) 

We get from (24) (with Res denoting the residue of a term) 

f: hoj(x) - ~ Ol dr hol(X - r)Ql,(r)  
1 jl  

= i ~ Res ~Z(k) (Or( -k )}~ le - '~x[~zm (34) 
l ,ra 

We shall apply this to the Yukawa potential, which is of intrinsic interest, 
and can also be used as an approximate " image  potential"  between ions and 
a metallic grounded electrode, (9~ 

e2zJ2 e-VX (35) 
u j ( x )  - 2,0 x 

where e is the electron charge, zj is the electrovalence of ion j, E0 is the dielectric 
constant of  the medium, and F -1 is four times the shielding length that 
depends on the ionic strength of the solution. (7,1~ 

5 See Ref. 8 for the one-species case. 
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In the MS approximation 

Cj(x) = +[3uj = +Aje - r~ / x  (36) 

Aj = -~e2zj2/2% (37) 

For this case, Eq. (9) yields 

f; hoj(x) - ~ ,  O~ dr ho~(x - r)Qlj(r) 
l tl 

-- ~'~12 e-PY - - A t  d y - - 7 -  P, (y - x )  (38) 

The last integral will have to be evaluated numerically. A physically interesting 
quantity is the adsorption isotherm, given by (29), in slightly different form 

g0i(%/2) = ~ [(~z,(0) - A~ f~z:2 dy (e-~'V/y)P,j(y - �89 (39) 

Due to the intrinsic weakness of the MS approximation, we expect that 
the exponential approximation ~11~ should give a substantially better theory. 
The exponential approximation is obtained simply by exponentiating (39). 
Thus 

} e x p  goj (aj/2) = [g~C(aj/2)] exp At dy (e-VY/y)Ptj(y - �89 (40) 
all2 

where g~(crj/2) is the hard-core contact value, which in the Percus-Yevick 
approximation is, according to the result of HAB, C1~ 

goH~('~j/2) = ~. 0Zj(0) (41) 
l 

As can be seen from (40) and (37), there is a positive adsorption caused by 
the image-force attraction that is proportional to A j, and thus to the square 
of the charge zj. A full discussion of this equation is left for the future. 

4. EXTENSIONS 

Although uniform in the sense described in our introduction, our system 
is not uniform with respect to the wall that we have introduced by taking the 
limit (1)-(2). In fact, relative to that wall, the one-particle density function 
p~(r) of species i is related to the ho~(X) of Eq. (9) by the expression 

p~(r) = p~[ho,(x) + II (42) 

where r is a vector with Cartesian coordinates (x, y, z). 
We note that the closure schemes (5)-(8) and their generalizations to 

the case of a fluid of many components can easily be embedded in expansions 6 

6 Various forms of  these exact expansions are summarized in Ref. 12. 
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that constitute a formally exact theory when appended to (9). The same 
expansion techniques that provide the basis for theories of c~j(t) are of value 
in dealing with Co~(X) as well. For example, one can replace (5)-(8) by an 
exact series representation that gives co(x) +/3w(x)  as a functional of h(x), 
OB, and hB(t), where hB(t) is the bulk two-particle total correlation function. 
This series follows immediately from the general h-bond o-vertex expan- 
sion (6'12) of c(ro, r~) + /3w(r0, r~) upon making the particle at ro a wall, where 
w(ro, r) is the two-point potential that becomes/3w(x), and c(ro, r) is the two- 
point direct correlation function that becomes Co(X). For some purposes it is 
more useful to employ a functional Taylor-series representation, (13,1~ such 
as Eqs. (4)-(5) of Ref. 13, which yield a representation of r in terms of 
h(x), pB, the bulk chemical potential Ix(O,/3), and O(r~, rj) and its functional 
derivatives with respect to the one-particle distribution function o(r), where 
((ri, rj) = c(ri, r~) - 3(r~, rj)/p(r0. We introduce the notation 

8m-2c(rl'r2) (43) 
cB(1,..., m)o(x) = 3p-~8) .--2. 3-~m ) o(,o=o(x) 

so that 8B(1, 2)p(x) stands for cB(t~2) - 3(r~, r2)/p evaluated with p set equal to 
O(x) = pB[ho(x) + 1], 6B(123)o(x ) stands for its functional derivative with 
respect to p(ra) evaluated at p(x), etc. Similarly we let Ix,(~) stand for Ix(O, 13) 
evaluated with o = p(x). When the distinguished particle 1 of Eqs. (4) and (5) 
of Ref. 13 (the particle 0 here) becomes a wall, those equations become 

Co(X) = - /3w(x)  -/3[ixp(,o - I x - pBh0(x) ~IX/0p] + Sl(x)  + ~ Sn(x) (44a) 
n>~2 

where 

S~(x) = PB f [ho(x2) - ho(x)] [6B(1, 2),(~) - 8B(1, 2)1 dr2 (44b) 

and for n /> 2, 

OB n ~. n +  1 

S (x) = 7 . ,  J [h0(x,)  - ho(x)le (1 . . . . .  n + ... (44 ) 

In (44) we have omitted the subscript 1 on the Cartesian coordinate x of r~ 
for notational simplicity. 

For a long-ranged ho(x) [e.g., for w(x) -7"- x -  ~, n > 3] and a short-ranged 
cB(1 ..... n) (e.g., for hard spheres) one can expect rapid convergence of (44), 
with the behavior of co(x) +/3w(x)  dominated by the 

- / 3 [ I x ~ x ,  - Ix - P . h o ( x )  oIx /~p]  

so that as x --> 0% 

flw(x) - r --> OB2 02/3Ix ho2(X) (45) 
2 Op 2 
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For small x, and for other combinations of wall-particle and particle- 
particle potentials, the convergence of (44) remains to be studied. 

The H N C  and PY approximations (5) and (6) can be systematically 
corrected using the same techniques314~ Let us write -/3/~ as m, so that (44) 
can be expressed as 

~m 
- r  = - r  T M  + mo~x , - m -ho(x) -~p  + ~ S~rrC(x) (46) 

n~>1 

One finds analogously 

- r  = - r  nNc + lp,x~ - l  - h o ( x ) ~  + ~ S~aNC(x) (47) 
n>~l 

= ,~'MSA where l In p - ]~/~, and the --.~HNC have the same structure as the _~ , 
except with E~(l ..... m), m ~> 2, replaced throughout by 

cB(1 .... ,m)  = 8~-2c(rl,  r2) 
8p(r3) "" 3p(rm) 

Due to the factors ho(xO - ho(x) in the integrands, S~ sA and S. aNc are in 
fact identical functions of  x. [The resulting identity ~ .  ~ 1 S T M  = ~ .  ~ a S. nNc 
can also be verified directly by equating (46) and (47).] One similarly finds 

OR 
- R e ( x )  = -RCPY(x) + Ro,x , - R - ho(x)-~p + ~ S~Y(x) (48) 

n>~J. 

where R = p/exp(fl~). The S, Pr also retains the structure of  the S~ sA, except 
with the EB now replaced by p(rl)c(r~, r2)/z(r~) and its derivatives with respect 
to p(h), where z(r) = exp[flt~ - flw(r0, r)]. The SP, Y(x) are different functions 
than the s~SA(x). The relative rates of  convergence of (48) and (44) will 
depend on the details of the wall-particle and interparticle potentials. 
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